

G. VENKATASWAMY NAIDU COLLEGE (AUTONOMOUS), KOVILPATTI – 628 502.

PG DEGREE END SEMESTER EXAMINATIONS - NOVEMBER 2024. (For those admitted in June 2023 and later)

PROGRAMME AND BRANCH: M.Sc., MATHEMATICS

SEM	CATEGORY		COMPONENT	COURSE CODE	COURSE TITLE
I	PART - III		CORE-2	P23MA102	REAL ANALYSIS I
Date :	06.1	1.2024	/ AN Time	: 3 hours	Maximum: 75 Marks
Course Outcome	Bloom's K-level	Q. No.	<u>SECT</u>	<u>ION – A (</u> 10 X 1 Answer <u>ALL Q</u> ue	= 10 Marks) stions.
CO1	K1	1.	If <i>f</i> is monotonic discontinuities c a) finite b) in	c on $[a, b]$, then the of f is finite c) counta	te set of able d) uncountable
CO1	K2	2.	A series ∑ a _n is a a) converges c) converges to (bsolutely converg b) diver d) None	gent if $\sum a_n $ rges to of the above
CO2	K1	3.	P' ⊇ P implies a) $ P' = P $ c) $ P' ≥ P $	 b) P' d) P' :	$\leq \ P\ \\ \neq \ P\ $
CO2	K2	4.	Let $\alpha \nearrow [a, b]$. The lower Stieltjes in $\overline{I}(f, a)$ Give the relation a) $\overline{I}(f, \alpha) = \underline{I}(f, \alpha)$ c) $\overline{I}(f, \alpha) \le \underline{I}(f, \alpha)$	e upper Stieltjes i ategral of α are de α) = inf{ $U(P, f, \alpha)$: α) = sup{ $L(P, f, \alpha)$: α between these two μ b) $\bar{I}(f, \alpha)$ α d) $\bar{I}(f, \alpha)$	ntegral of α and the fined as $P \in \mathcal{P}[a, b]$ } $P \in \mathcal{P}[a, b]$ }. wo integrals. $) \geq \underline{I}(f, \alpha)$ $) \neq \underline{I}(f, \alpha)$
CO3	K1	5.	The sufficient co Riemann integra a) <i>f</i> is continuo b) <i>f</i> is of bounde c) both a) and b d) None of the a	ondition for the exact $\int_{a}^{b} f(x) dx$ is us on $[a, b]$ ed variation on $[a, b]$ bove	istence of the , <i>b</i>]

CO3	K2	6.	Let <i>f</i> be defined and bounded on an interval <i>S</i> . If $T \subseteq S$, the number oscillation of <i>f</i> on <i>T</i> is a) $inf\{f(x) - f(y): x \in T, y \in T\}$ b) $sup\{f(x) - f(y): x \in T, y \in T\}$ c) $inf\{f(x) - f(y): x \in S, y \in T\}$ d) $sup\{f(x) - f(y): x \in S, y \in T\}$
CO4	K1	7.	Let $f(p,q) = \frac{pq}{p^2 + q^2}$. Then $\lim_{q \to \infty} f(p,q) = $ a) p b) $\frac{1}{p}$ c) 1 d) 0
CO4	K2	8.	Let $a_n \ge 0$. Then the product $\prod(1 + a_n)$ converges if and only if $\sum a_n$ a) converges b) diverges c) conditionally converges d) none of the above
CO5	K1	9.	Let $f_n(x) = \frac{\sin nx}{\sqrt{n}}$ if $x \in R, n = 1, 2,$ Then $\lim_{n \to \infty} f_n(x) = \underline{\qquad} \text{for every } x.$ a) 1 b) $1/2$ c) 2 d) 0
CO5	K2	10.	Let $f_n(x) = x^n$ if $0 \le x \le 1$. Then $\lim_{n \to \infty} \int_0^1 f_n(x) =$ a) 0 b) e c) 2 d) 1
Course Outcome	Bloom's K-level	Q. No.	<u>SECTION – B (</u> 5 X 5 = 25 Marks) Answer <u>ALL</u> Questions choosing either (a) or (b)
CO1	K2	11a.	i. If f is monotonic on $[a, b]$, then prove that f is of
			 bounded variation on [a, b]. ii. If f is continuous on [a, b] and if f' exists and is bounded in the interior, say f'(x) ≤ A for all x in (a, b), then show that f is of bounded variation on [a, b].
CO1	K2	11b.	bounded variation on $[a, b]$. ii. If f is continuous on $[a, b]$ and if f' exists and is bounded in the interior, say $ f'(x) \le A$ for all x in (a, b), then show that f is of bounded variation on [a, b]. (OR) Let $\sum a_n$ be a given series with real-valued terms and define $p_n = \frac{ a_n + a_n}{2}, q_n = \frac{ a_n - a_n}{2}$ (n = 1, 2,) Then show that if $\sum a_n$ is conditionally convergent, both $\sum p_n$ and $\sum q_n$ diverge.
CO1	K2 K2	11b. 12a.	bounded variation on $[a, b]$. ii. If f is continuous on $[a, b]$ and if f' exists and is bounded in the interior, say $ f'(x) \le A$ for all x in (a, b), then show that f is of bounded variation on [a, b]. (OR) Let $\sum a_n$ be a given series with real-valued terms and define $p_n = \frac{ a_n + a_n}{2}, q_n = \frac{ a_n - a_n}{2}$ (n = 1, 2,) Then show that if $\sum a_n$ is conditionally convergent, both $\sum p_n$ and $\sum q_n$ diverge. State and Prove Euler's Summation Formula. (OR)

CO3	K3	13a.	If f is continuous on $[a, b]$ and if α is of bounded
			variation on $[a, b]$, then prove that $f \in R(\alpha)$ on $[a, b]$.
			(OR)
CO3	K3	13b.	Assume that α is continuous and that $f \nearrow$ on [a, b].
			Then prove that there exists a point x_0 in [a, b] such
			that
			b x_0 b c c
			$\int f(x) d\alpha(x) = f(a) \int d\alpha(x) + f(b) \int d\alpha(x)$
004	170	1.4	a a x_0
C04	K3	14a.	If a series is convergent with sum S, then prove that it
			is also (C, I) summable with Cesaro sum S.
			(OR)
CO4	K3	14b.	Write the statement of Tauber's Theorem and also
			prove that this theorem.
CO5	K4	15a.	Assume that $f_n \to f$ uniformly on S. If each f_n is
			continuous at a point c of S, then prove that the limit
			function f is also continuous at c .
			(OR)
CO5	K4	15b.	Assume that $\lim_{n \to \infty} f_n = f$ on $[a, b]$. If $g \in R$ on $[a, b]$,
			define $h(x) = \int_a^x f(t)g(t)dt$, $h_n(x) = \int_a^x f_n(t)g(t)dt$, if $x \in$
			[<i>a</i> , <i>b</i>]. Then prove that $h_n \rightarrow h$ uniformly on [<i>a</i> , <i>b</i>].

Course Outcome	Bloom's K-level	Q. No	<u>SECTION – C (</u> 5 X 8 = 40 Marks) Answer <u>ALL Q</u> uestions choosing either (a) or (b)
CO1	K4	16a.	Assume that <i>f</i> is of bounded variation on $[a, b]$, and assume that $c \in [a, b]$. Then prove that <i>f</i> is of bounded variation on $[a, c]$ and on $[c, b]$ and also prove that $V_f(a, b) = V_f(a, c) + V_f(c, b)$.
0.01	77.4	1.61	(OR)
COI	K4	16b.	Assume that <i>f</i> is of bounded variation on $[a, b]$. If $x \in (a, b]$, let $V(x) = V_f(a, x)$ and put $V(a) = 0$. Then prove that every point of continuity of <i>f</i> is also a point of continuity of V. Also prove that the converse is true.
CO2	K5	17a.	Assume $f \in R(\alpha)$ on $[a, b]$ and assume that α has a continuous derivative α' on $[a, b]$. Then prove that the Riemann Integral $\int_{a}^{b} f(x)\alpha'(x)dx$ exists and also prove
			that $\int_{a}^{b} f(x) d\alpha(x) = \int_{a}^{b} f(x) \alpha'(x) dx$
			$\int \int $
0.00		1 - 1	(\mathbf{OR})
CO2	K5	17b.	three statements are equivalent. i. $f \in R(\alpha)$ on $[a, b]$.

			ii facticfica Diamann's condition with respect to a
			1. I satisfies Riemann's condition with respect to α
			on [<i>a</i> , <i>b</i>].
			iii. $\underline{I}(f, \alpha) = I(f, \alpha).$
CO3	К5	18a.	Assume that α is of bounded variation on $[a, b]$. Let $V(x)$ denote the total variation of α on $[a, x]$ if $a < x \le b$, and let $V(a) = 0$. Let f be defined and bounded on $[a, b]$. If $f \in R(\alpha)$ on $[a, b]$, then prove that $f \in R(V)$ on $[a, b]$. (OR)
CO3	K5	18b.	State and Prove Lebesgue's criterion for Riemann- Integrability.
CO4	K5	19a.	Assume that each $a_n \ge 0$. Then prove that the product $\prod (1 - a_n)$ converges if and only if the series $\sum a_n$ converges.
			(OR)
CO4	K5	19b.	(OR) State and prove Abel's Limit Theorem.
CO4 CO5	K5 K6	19b. 20a.	(OR) State and prove Abel's Limit Theorem. Let α be of bounded variation on $[a, b]$. Assume that each term of the sequence $\{f_n\}$ is a real-valued function such that $f_n \in R(\alpha)$ on $[a, b]$ for each $n = 1, 2,$ Assume that $f_n \to f$ uniformly on $[a, b]$ and define $g_n(x) =$ $\int_a^x f_n(t) d\alpha(t)$ if $x \in [a, b]$, $n = 1, 2,$ Then prove that i. $f \in R(\alpha)$ on $[a, b]$. ii. $g_n \to g$ uniformly on $[a, b]$, where $g(x) =$ $\int_a^x f(t) d\alpha(t)$. (OR)